首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical and Experimental Study on Residual Stress in Gray Cast Iron Stress Lattice Shape Casting
Authors:Yuichi Motoyama  Hiroki Takahashi  Toshimitsu Okane  Yoya Fukuda  Makoto Yoshida
Affiliation:1. Department of Modern Mechanical Engineering, Graduate School of Waseda University, 3-4-1 Shinjyuku-ku, Okubo, Tokyo, 169-8555, Japan
2. Package Group, Future Module Development Center, Electronic Device Laboratory, Corporate R&D Headquarters, Fuji Electric Co., Ltd., Matsumoto, Nagano, Japan
3. Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan
4. Development Department, Kimura Chuzosho Co., Ltd., 1157 Nagasawa, Shimizu-cho, Sunto-gun, Shizuoka-ken, Japan
5. Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo, 169-0051, Japan
Abstract:The prediction of residual stress in a stress lattice shape casting (stress lattice) has been conducted and discussed by some researchers via the Finite Element Method (FEM). However, most of the previous studies used the first-order tetrahedral element, which has poor analysis accuracy in problems including bending. The use of the first-order tetrahedral element makes the verification of these studies uncertain because the bending deformation essentially occurs in the stress lattice casting. This study first shows that the thermal stress analysis for the stress lattice should use the element that can represent the bending deformation in principle for bending of the thin parts. Second, the simulated residual stress was compared with the measured value. The thermal stress analysis successfully predicted the residual stress of the stress lattice casting with and 11 pct difference. In addition to the prediction of the residual stress, it is important from the viewpoint of the productivity of castings to reveal the effect of the shake-out temperature on the residual stress. However, in the previous studies, conclusions concerning the effect of the shake-out temperature on the residual stress were not consistent (i.e., the one study said the higher shake-out temperature decreased the residual stress, and another study said a higher shake-out temperature increased the residual stress). Therefore, the current study first discusses the reason for the inconsistent conclusions in the previous studies. Second, stress lattice castings were cast and shaken out at various shake-out temperatures. Then, the current study validated the effect of the shake-out temperature on the residual stress. Consequently, the experimental results supported the conclusion of Kasch and Mikelonis that the shake-out at higher temperature contributed to the increase of the residual stress in the casting.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号