首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic modeling and characteristic analysis of a two-stage vapor injection heat pump system under frosting conditions
Affiliation:1. Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA;2. Center for Environmental Energy Engineering, University of Maryland, College Park, 4164 Glenn L. Martin Hall Bldg., MD 20742, USA
Abstract:This paper presents a distributed-parameter dynamic heat exchanger model integrated with a detailed frost growth model to account for non-uniform frost formation on a fan-supplied finned-tube coil. A novel, iteration-free approach is proposed to solve the air flow redistribution by linearizing a system of non-linear air pressure drop equalization equations, resulting in a significant improvement in the computational efficiency. As a continuation and extension of our previous work, the developed models along with the component models described in Qiao et al. (2015a) are applied for the first time to explore the frosting dynamics of a two-stage flash tank vapor injection heat pump system. It is found that frost formation degrades the heating performance of the system substantially. Meanwhile, the simulation indicates that air and refrigerant flow maldistribution, resulting from non-uniform frost growth on the outdoor heat exchanger, can lead to unstable system hunting behavior. Comparisons between the simulation results and experimental data indicate that the proposed models can reasonably predict the time-dependent heat transfer and fluid flow phenomena of the system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号