首页 | 本学科首页   官方微博 | 高级检索  
     


Development of electrolyte filtration system for ECM taking into account removal of chromium (VI) ions
Affiliation:1. Fraunhofer Institute for Ceramic Technology and Systems, Winterbergstr. 28, 01277 Dresden, FRG;2. Institute of Material Science, TU Dresden, Helmholtzstr. 7, 01069 Dresden, FRG
Abstract:During the ECM process, the metal workpiece is dissolved and turns into sludge which contaminates the electrolyte. To realize precise ECM with high cost-effectiveness, an electrolyte treatment system which can realize reuse of the electrolyte and maintain the electrolyte quality constant is significantly important and essential. Especially, in the ECM of alloys containing a certain level of chromium, it is very likely chromium dissolves to the toxic carcinogen Cr(VI). Therefore, an electrolyte filtration system is required for removing not only the sludge but also residual toxic ions in the electrolyte for health and environment conservation reasons. In this study, activated carbon and scrap iron, which are low cost and easily available materials, were newly utilized to reduce and remove toxic Cr(VI) ions. Experiments clarified that use of activated carbon has no influence on the machining ability of NaNO3 aqueous solution serving as the electrolyte. By adjusting the pH of the electrolyte to acidic, activated carbon can remove Cr(VI) from the NaNO3 aqueous solution electrolyte to a concentration of less than 0.1 mg/L. On the other hand, scrap iron generated from metal cutting processes can be used to reduce Cr(VI) to non-toxic Cr(III). By mixing HNO3 into the electrolyte solution, the reduction efficiency of scrap iron on Cr(VI) improves significantly.
Keywords:Electrochemical machining  Electrolyte treatment  Electrolyte filtration  Chromium removal  Cr(VI) reduction  Activated carbon  Scrap iron
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号