首页 | 本学科首页   官方微博 | 高级检索  
     

结合情节挖掘的软件实体演化耦合分析方法
引用本文:张鑫雨,晋武侠,刘靖雯,范铭,刘烃. 结合情节挖掘的软件实体演化耦合分析方法[J]. 软件学报, 2023, 34(6): 2562-2585
作者姓名:张鑫雨  晋武侠  刘靖雯  范铭  刘烃
作者单位:西安交通大学 软件学院,陕西 西安 710049;西安交通大学 网络空间安全学院,陕西 西安 710049
基金项目:国家重点研发计划资助项目(2018YFB1004500),国家自然科学基金(61902306, 62002280, 61721002, 61833015, 62272387),中央高校基本科研业务费专项资金, 中国博士后基金(2020M683507, 2019TQ0251, 2020M673439)和西安市科协青年人才支持计划(095920201303)
摘    要:软件系统的实体演化耦合分析有助于共同变更预测、软件供应链风险识别、代码漏洞溯源、缺陷预测、架构问题定位等分析活动.两个代码实体之间存在演化耦合(evolutionary coupling)是指在软件修订历史中这对实体倾向于共同变更(共变).已有的演化耦合分析方法难以准确检测软件维护历史中频繁发生的、有“距离”的共变.为了解决这一问题,本文提出基于关联规则挖掘、情节挖掘、潜在语义索引模型结合的演化耦合分析方法(Association Rule,MINEPI and LSI basedMethod,AR-MIM),挖掘有“距离”的共同变更关系.实验收集了58个Python项目、242074条训练数据、330660条groundtruth的数据集,与已有的4种baseline方法相比验证AR-MIM的效果.结果表明在预测共同变更候选项场景上,AR-MIM的准确性、召回率、F1分数均优于已有方法.

关 键 词:提交历史  演化耦合  情节挖掘  潜在语义索引  关联规则挖掘
收稿时间:2022-09-05
修稿时间:2022-12-14

Evolutionary Coupling Analysis Method of Software Entity Based on Episode Mining
ZHANG Xin-Yu,JIN Wu-Xi,LIU Jing-Wen,FAN Ming,LIU Ting. Evolutionary Coupling Analysis Method of Software Entity Based on Episode Mining[J]. Journal of Software, 2023, 34(6): 2562-2585
Authors:ZHANG Xin-Yu  JIN Wu-Xi  LIU Jing-Wen  FAN Ming  LIU Ting
Affiliation:School of Software Engineering, Xi''an Jiaotong University, Xi''an 710049, China;School of Cyber Science and Engineering, Xi''an Jiaotong University, Xi''an 710049, China
Abstract:The entity evolution coupling analysis of software systems is helpful for analysis activities such as co-change candidate prediction, risk identification of software supply chain, code vulnerability traceability, defect prediction and architecture problem localization. The evolutionary coupling between two entities indicates that these entities tend to be changed together in the software revision history. Existing methods present a low accuracy to detect the frequent "having distance" co-change in the revision history. To address this problem, this paper proposes an evolutionary coupling analysis method based on the combination of Association Rules mining , Episode mining and Latent Semantic Indexing(Association Rule , MINEPI and LSI based Method, AR-MIM), which mines co-change relations of "having distance". The experiment verified the effectiveness of AR-MIM by compared with the four baseline methods on the dataset, collecting 58 Python projects, 242074 pieces of training data, and 330660 pieces of ground truth. The results show that the precision, recall, and F1 score of AR-MIM are better than those of existing methods in co-change candidate prediction.
Keywords:commit history  evolutionary coupling  episode mining  LSI  Association Rule Mining
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号