首页 | 本学科首页   官方微博 | 高级检索  
     

基于XGBoost建模及改进灰狼优化算法的再热汽温预测优化控制
引用本文:马良玉,於世磊,王佳聪,袁乃正. 基于XGBoost建模及改进灰狼优化算法的再热汽温预测优化控制[J]. 热能动力工程, 2023, 38(1): 104-111
作者姓名:马良玉  於世磊  王佳聪  袁乃正
作者单位:华北电力大学控制与计算机工程学院,河北保定071003;中国航天空气动力技术研究院,北京100074
摘    要:为改善燃煤机组频繁变负荷过程中再热汽温的控制效果,提出一种基于机器学习的再热汽温预测优化控制方法。首先利用机组变负荷历史运行数据和XGBoost算法进行再热汽温特性建模,并采用随机搜索算法对模型参数进行优化以提高其预测精度。以最终的模型为基础,采用改进的灰狼优化算法(IGWO)对烟气侧再热挡板开度和蒸汽侧喷水减温阀指令进行实时寻优,实现再热汽温的预测优化控制。利用仿真机进行优化控制仿真试验。试验结果表明:采用智能预测优化控制方案可有效改善再热汽温控制效果,明显减少减温喷水用量,有助于提高机组的经济性。

关 键 词:火电机组  再热汽温  XGBoost模型  灰狼优化算法  预测优化控制

Reheat Steam Temperature Predictive Optimization Control based on XGBoost Modeling and Improved Grey Wolf Algorithm
MA Liang-yu,YU Shi-lei,WANG Jia-cong,YUAN Nai-zheng. Reheat Steam Temperature Predictive Optimization Control based on XGBoost Modeling and Improved Grey Wolf Algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(1): 104-111
Authors:MA Liang-yu  YU Shi-lei  WANG Jia-cong  YUAN Nai-zheng
Affiliation:School of Control and Computer Engineering,North China Electric Power University Baoding,China,Post Code:071003;China Academy of Aerospace Aerodynamics,Beijing,China,Post Code:100074
Abstract:In order to improve the control effect of reheat steam temperature (RST) during the frequent load change of coal fired units,a RST predictive optimization control approach based on machine learning was proposed. Firstly,the RST prediction model was developed with the historical variable load operation data by using the eXtreme Gradient Boosting (XGBoost) algorithm,and the model parameters were optimized with the random search method to improve its prediction accuracy. Based on the final well trained model,an improved grey wolf optimizer (IGWO) was employed to realize predictive optimization control of RST by searching the real time optimal instructions of the flue gas side reheat baffle opening and the steam side water spray desuperheating valve. Optimization control simulation tests were carried out with a full scope simulator. The experimental results show that the intelligent predictive optimization control scheme proposed in this paper can effectively improve the control effect of RST,and significantly reduce the amount of desuperheating water spray,which helps to improve the economy of the unit.
Keywords:thermal power unit  reheat steam temperature  XGBoost modeling  grey wolf optimizer  predictive optimization control
本文献已被 万方数据 等数据库收录!
点击此处可从《热能动力工程》浏览原始摘要信息
点击此处可从《热能动力工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号