首页 | 本学科首页   官方微博 | 高级检索  
     

基于1D-CNN 的弹链运动加速度分类与识别
引用本文:仇 坤. 基于1D-CNN 的弹链运动加速度分类与识别[J]. 兵工自动化, 2023, 42(2): 52-58
作者姓名:仇 坤
作者单位:南京理工大学机械工程学院
摘    要:针对人工判读研究弹链运动规律时存在过程复杂、效果不佳的问题,结合弹链运动加速度的1维特性,提出一种基于1D-CNN的弹链运动加速度分类与识别方法。基于Keras深度学习框架搭建1维卷积神经网络模型(1D convolutional neural network,1D-CNN),对小口径自动炮射击试验中获取的弹链运动加速度信号进行数据预处理并制作训练集和测试集,利用训练集和测试集对1D-CNN模型进行训练和测试。结果表明:利用1D-CNN模型可实现弹链运动加速度信号的分类和识别,准确率在84%左右,达到了预期效果。

关 键 词:1维卷积神经网络  1维加速度时间序列  数据预处理  数据分类与识别
收稿时间:2022-10-25
修稿时间:2022-11-28

Classification and Recognition of Ammunition Link Motion AccelerationBased on 1D-CNN
Abstract:Aiming at the problems of complex process and poor effect in manual interpretation of ammunition chainmotion law, a classification and recognition method of ammunition chain motion acceleration based on 1D convolutionalneural network (1D-CNN) model is proposed by combining the one-dimensional characteristics of ammunition chainmotion acceleration. The 1D-CNN model was built based on Keras deep learning framework. The data of ammunition chainmotion acceleration signal obtained from small bore automatic gun firing test was preprocessed, and the training set andtest set were made to train and test the 1D convolutional neural network model. The results show that the 1D-CNN modelcan realize the classification and recognition of ammunition chain motion acceleration signal, and the accuracy rate is about84%, which achieves the expected effect.
Keywords:1D-CNN   1D acceleration time series   data preprocessing   data classification and recognition
点击此处可从《兵工自动化》浏览原始摘要信息
点击此处可从《兵工自动化》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号