首页 | 本学科首页   官方微博 | 高级检索  
     


Improved compensation of turbulence-induced amplitude and phase distortions by means of multiple near-field phase adjustments
Authors:Barchers J D  Ellerbroek B L
Affiliation:Starfire Optical Range, Directed Energy Directorate, US Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, USA.
Abstract:An approach for compensation of turbulence-induced amplitude and phase distortions is described. Two deformable mirrors are placed optically conjugate to the collecting aperture and to a finite range from this aperture. Two control algorithms are presented. The first is a sequential generalized projection algorithm (SGPA) that is similar to the Gerchberg-Saxton phase retrieval algorithm. The second is a parallel generalized projection algorithm (PGPA) that introduces constraints that minimize the number of branch points in the control commands for the deformable mirrors. These approaches are compared with the approach of placing the second deformable mirror conjugate to the far field of the collecting aperture and using the Gerchberg-Saxton algorithm to determine the optimal mirror commands. Simulation results show that placing the second deformable mirror at a finite range can achieve near-unity Strehl ratio regardless of the strength of the scintillation induced by propagation through extended paths, while the maximum Strehl ratio of the far-field approach drops off with increasing scintillation. The feasibility of the solutions is evaluated by counting the branch points contained in the deformable mirror commands. There are large numbers of branch points contained in the control commands that are generated by the Gerchberg-Saxton SGPA-based algorithms, irrespective of where the second deformable mirror is located. However, the control commands generated by the PGPA with branch point constraints achieves excellent Strehl ratio and minimizes the number of branch points.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号