首页 | 本学科首页   官方微博 | 高级检索  
     


Vitrification of aqueous suspensions from a controlled environment for electron microscopy: An improved plunge-cooling device
Authors:B J BATTERSBY  J C W SHARP  R I WEBB  G T BARNES
Abstract:In the process of vitrifying aqueous suspensions for cryotransmission electron microscopy, water is solidified without crystallization. Vitrification can be achieved by rapidly plunging an aqueous thin film into a liquid cryogen. The preparation of aqueous thin films prior to vitrification must be performed in an environmental cabinet at controlled temperature and humidity in order to prevent evaporation and temperature-induced phase changes in the thin film. The device described here incorporates several important features which make the apparatus simpler and more convenient to use than similar devices described in the literature. One of these features includes the use of a totally enclosed environmental cabinet in which the grid, sample, micropipette and absorbent paper are equilibrated before thin-film preparation. Other features include a cryogen dewar on a swing arm for easy refilling, a guillotine shutter which is used to trigger the plunger electrically and a semiautomatic system which facilitates rapid transfer of the vitrified specimen from liquid propane to liquid nitrogen for storage and reduces handling of the specimen. To demonstrate the utility of the device, results showing the influence of temperature on the morphology of phospholipid vesicles are presented. A commercial cryotransfer apparatus (which is used for transportation of the vitrified specimen to the electron microscope cold-stage) has been modified to reduce the possibility of reversion of the vitreous phase to the crystalline ice phases.
Keywords:Cryo-electron microscopy  vitrification  vitreous ice  phospholipid  vesicle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号