首页 | 本学科首页   官方微博 | 高级检索  
     


Device visualization for interventional MRI using local magneticfields: basic theory and its application to catheter visualization
Authors:Glowinski  A Kursch  J Adam  G Bucker  A Noll  TG Gunther  RW
Affiliation:Dept. of Radiol., Tech. Univ. Aachen;
Abstract:This paper addresses one of the major problems in interventional magnetic resonance imaging (MRI): the visualization of interventional devices. For visualization locally induced magnetic fields are used, which disturb the homogeneity of the main magnetic field of the MR scanner. This results in signal loss in the vicinity of the device due to intravoxel dephasing, and leads to a disturbance of the phase image. The local fields are established by a low current in a closed copper loop along the device. This method is introduced as a means for catheter visualization. The basic theory behind this method is presented. Simulations are performed to determine the effect of intravoxel dephasing, without interfering effects like susceptibility or radio-frequency artifacts. Scanned and simulated data is used to verify the theoretical consideration. Different configurations of wire loops are discussed and two types of catheter visualization scans are proposed. Results from a pig study show that this methods holds promise for intravascular interventions under MRI guidance
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号