首页 | 本学科首页   官方微博 | 高级检索  
     

改进小波在调制模式识别中的应用
引用本文:秦立龙,王振宇,闫朋展. 改进小波在调制模式识别中的应用[J]. 通信技术, 2012, 0(11): 11-13
作者姓名:秦立龙  王振宇  闫朋展
作者单位:解放军电子工程学院信息系,安徽合肥230037
摘    要:在分析提升小波应用在调制模式自动识别的基础上,提出了一种新的特征提取方法。该方法首先利用最优估计理论获得小波的最佳预测系数,根据最佳预测系数进行分解提取特征值,最后利用支持向量机分类器进行信号的分类识别。在求解支持向量机的参数优化问题中,提出了一种通用的解决方案,利用带惯性权重的粒子群算法来确定其最优系数。新方法提取的特征值经计算机仿真研究证明,该算法具有较好的工程应用性和有效性。

关 键 词:调制识别  粒子群算法  提升小波  支持向量机

Application of Modified Lifting Wavelet in Modulation Recognition
QIN Li-long,WANG Zhen-yu,YAN Peng-zhan. Application of Modified Lifting Wavelet in Modulation Recognition[J]. Communications Technology, 2012, 0(11): 11-13
Authors:QIN Li-long  WANG Zhen-yu  YAN Peng-zhan
Affiliation:(Department of Information, PLA Electronic Engineering Institute, Hefei Anhui 230037, China)
Abstract:Based on analysis of the digital modulation recognition based on lifting wavelet, a new feature extraction method is proposed. First, the optimal estimation theory is used to obtain the best prediction coefficients, then the feature is extracted according to the distribution of the decomposition with second generation wavelets, and finally by using SVM classification machine, the categorized identification of the signal is done. In order to determine the optimal coefficient, a universal solution using particle swarm optimization algorithm is presented. The computer simulation on the extracted feature values indicates that this new algorithm is feasible and practicable in engineering application.
Keywords:modulation recognition  particle swarm optimization" lifting wavelet  supportvector machine
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号