首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallization,melting behavior,and crystal structure of reactive,intumescent, flame‐retardant polypropylene
Authors:Guixun Li  Shaokui Cao  Shijun Zheng  Wanjie Wang  Yanxia Cao  Jingwu Wang
Affiliation:School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
Abstract:Polypropylene (PP)/2‐({9‐[(4,6‐diamino‐1,3,5‐triazin‐2‐yl) amino]‐3,9‐dioxido‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro [5.5] undecan‐3‐yl} oxy) ethyl methacrylate (EADP) composites were prepared by the blending of PP with EADP as a new flame‐retardant material. The nonisothermal crystallization and melting behaviors of composites were investigated with differential scanning calorimetry (DSC). Their crystal morphologies and structures were studied by polarized optical microscopy (POM) and X‐ray diffraction (XRD), respectively. The DSC results show that the addition of EADP increased the crystallization onset temperature, crystallization peak temperature, and degree of crystallinity of PP in the PP/EADP composites. The melting onset temperature and melting end temperature of the PP/EADP composites decreased slightly, whereas the melting peak temperature of the PP/EADP composites increased. The POM results show that the addition of EADP greatly reduced the crystal size of PP in the composites. When the content of EADP in the PP/EADP composites was increased, the crystal size of PP became smaller. The XRD results indicate that the addition of EADP changed the crystal structure of PP in the PP/EADP composites, which exhibited both α‐form and β‐form crystal structures. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41374.
Keywords:crystallization  flame retardance  morphology  polyolefins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号