首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of pervaporation performance of composite membranes through in situ generation of silver nanoparticles in poly(vinyl alcohol) matrix
Authors:HG Premakshi  Ashok M Sajjan  Arjumand A Kittur  Mahadevappa Y Kariduraganavar
Affiliation:Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
Abstract:Composite membranes were prepared from an aqueous solution of poly(vinyl alcohol) (PVA) and silver sulphate. The silver nanoparticles were generated in situ before crosslinking PVA matrix by reduction of silver ions using sodium borohydride. Physico‐chemical properties of the resulting composite membranes were studied using Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy (UV–vis), thermogravimetric analysis (TGA), Wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and universal testing machine (UTM). The UV–vis spectrum shows a single peak at 410 nm due to surface plasmon absorption of silver nanoparticles. This surely specified that silver nanoparticles are generated in PVA matrix. The membranes were under go pervaporation (PV) for separation of water from isopropanol at different temperatures. The results indicated that hydrophilicity and amorphous nature of the membranes were increased with increasing silver nanoparticles in PVA matrix. The swelling and separation performance of the membranes were studied. Both permeation flux and separation factor were increased with increasing silver nanoparticles in PVA matrix. The results showed that the membrane containing 2.5 mass% of Ag salt exhibited excellent PV performance. The values of total flux and flux of water are almost closed to each other, indicating that membranes could be effectively used to break the azeotropic point of water‐isopropanol. The long‐term test was performed at room temperature and ascertained that membranes were durable up to 30 days for the dehydration of IPA. On the basis of the estimate Arrhenius activation energy values, the efficiency of the membranes was discussed. The calculated ΔHs values are negative for all the membranes, indicating that Longmuir's mode of sorption is predominant. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41248.
Keywords:composites  crosslinking  membranes  swelling  thermogravimetric analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号