首页 | 本学科首页   官方微博 | 高级检索  
     


Resistance of paper mill sludge/wood fiber/high‐density polyethylene composites to water immersion and thermotreatment
Authors:Xiaohui Yang  Weihong Wang  Haibing Huang
Affiliation:1. Key Laboratory of Biobased Material Science & Technology (Education Ministry), Northeast Forestry University, Harbin, China;2. Heilongjiang Wood Science Research Institute, Harbin, China
Abstract:The disposal of paper mill sludge (PMS) is a difficult environmental problem. Thus, PMS has been used as a substitute for wood fiber (WF) to reinforce high‐density polyethylene (HDPE). In this study, we compared PMS–WF–HDPE composites with composites without PMS after water immersion and thermal treatment. Water immersion and thermal treatment were conducted at 25 and 70°C, respectively. The results show that the composites with PMS absorbed less water but lost more of their original flexural properties after immersion; thereby, their strength was compromised. These reduced mechanical properties could be partially restored after redrying. After the thermotreatment, the composites with added PMS lost their weight and flexural properties, whereas the composites without PMS gained flexural strength. The results show that the thermotreatment improved the impact strength of the composites when no more than one‐third of WF was replaced with PMS. Fourier transform infrared spectroscopy and energy‐dispersive X‐ray energy‐dispersive spectroscopy showed that the wood index of the PMS composite decreased more than the index of the non‐PMS composite, whereas the carbonyl index increased more. However, the PMS composite showed a lower increase in the total oxygen/carbon weight ratio. This study suggested that limited amounts of WF could be substituted with PMS to reinforce HDPE. However, WF–PMS–HDPE composites should not be used in hot, humid environments for long periods. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41655.
Keywords:aging  cellulose and other wood products  properties and characterization  thermoplastics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号