首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of mold cavity temperature on surface quality and mechanical properties of nanoparticle‐filled polymer in rapid heat cycle molding
Authors:Aimin Zhang  Guoqun Zhao  Yanjin Guan
Affiliation:1. Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, People's Republic of China;2. Engineering Research Center for Mold and Die Technologies, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, People's Republic of China;3. Center of Material Charaterization and Analysis, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, People's Republic of China
Abstract:Acrylonitrile‐butadiene‐styrene (ABS)/poly methyl methacrylate (PMMA) and ABS/PMMA/nano‐CaCO3 composites were prepared in a corotating twin screw extruder. Single‐gate and double‐gate samples were molded based on a rapid heat cycle molding (RHCM) system. Effects of mold cavity temperature on surface quality and mechanical properties of single‐gate and double‐gate samples in RHCM process were conducted. The results showed that surface quality of plastic parts can be improved significantly by increasing mold cavity temperature. Nano‐CaCO3 particles on the surface of plastic parts can be eliminated by using high mold cavity temperature. The roughness and gloss of two kinds of plastic parts (ABS/PMMA and ABS/PMMA/nano‐CaCO3) stabilized at the same level when the mold cavity temperature is above glass transition temperature of resin material. Weld line can be eliminated in RHCM process during high mold cavity temperature. The tensile strength of both ABS/PMMA and ABS/PMMA/nano‐CaCO3 exhibited decreasing trend with the increase of mold cavity temperature. Reduction of internal stress gave rise to the increase of Izod impact strength of ABS/PMMA for both sing‐gate and double‐gate samples. However, influence regularity of mold cavity temperature on Izod impact strength of ABS/PMMA/nano‐CaCO3 is depended on the number of gates. For all the samples in this study, too high of mold cavity temperature (higher than 125°C) deprave Izod impact strength of plastic parts. Both ABS/PMMA and ABS/PMMA/nano‐CaCO3 are not susceptible to weld line. When the mold surface temperature is approximately equal to glass transition temperature of resin material, all the samples are found to give the best combination of properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41420.
Keywords:blends  mechanical properties  resins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号