首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and properties of diffusion bonded transition joints between commercially pure titanium and type 304 stainless steel using a nickel interlayer
Authors:Sukumar Kundu  Subrata Chatterjee
Affiliation:(1) Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah, 711103, India
Abstract:The solid-state diffusion bonding was carried out between commercially pure titanium and Type 304 stainless steel using nickel as an interlayer in the temperature range of 800–900 °C for 9 ks under 3 MPa load in vacuum. The transition joints thus formed were characterized in the optical and scanning electron microscopes. The inter-diffusion of the chemical species across the diffusion interfaces were evaluated by electron probe microanalysis. TiNi3, TiNi and Ti2Ni are formed at the nickel–titanium (Ni–Ti) interface; however, the stainless steel–nickel (SS–Ni) diffusion interface is free from intermetallic compounds up to 850 °C temperature. At 900 °C, the Ni–Ti interface exhibits the presence of α-β Ti discrete islands in the matrix of Ti2Ni and λ + χ + α-Fe, λ + FeTi and λ + FeTi + β-Ti phase mixtures occur at the SS–Ni interface. The occurrence of different intermetallics are confirmed by the x-ray diffraction technique. The maximum tensile strength of ∼276 MPa and shear strength of ∼209 MPa along with 7.3% elongation were obtained for the diffusion couple processed at 850 °C. At the 900 °C joining temperature, the formation of Fe–Ti base intermetallics reduces the bond strength. Evaluation of the fracture surfaces using scanning electron microscopy and energy dispersive spectroscopy demonstrates that failure takes place through Ni–Ti interface up to 850 °C and through the SS–Ni interface of the joint when processed at 900 °C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号