首页 | 本学科首页   官方微博 | 高级检索  
     


Structural Evolution of Q-Carbon and Nanodiamonds
Authors:Siddharth Gupta  Anagh Bhaumik  Ritesh Sachan  Jagdish Narayan
Affiliation:1.Department of Materials Science and Engineering, Centennial Campus,North Carolina State University,Raleigh,USA;2.Materials Science Division,Army Research Office,Research Triangle Park,USA
Abstract:This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp3 content. The phenomenon of solid–liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp3 content of DLC thin films was modeled based on perturbation theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号