首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study of particle dispersion in the wake of gas-particle flows past a circular cylinder using discrete vortex method
Authors:Yuandong Huang  Wenquan Wu
Affiliation:a Department of Environmental Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
b School of Civil Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Abstract:A numerical investigation on the particle dispersion in the wake of particle-laden gas flows past a circular cylinder at Reynolds number of 105 is presented. In the numerical method, the Discrete Vortex Method with the diffusion velocity model is employed to calculate the unsteady gas flow fields and a Lagrangian approach is applied to track individual particles. A dispersion function is defined to represent the dispersion scale of the particle. The distributions of gas velocities and vortex blobs, the trajectories and dispersion functions as well as distributions for particles with various Stokes numbers ranging from 0.01 to 1000 are obtained. The numerical results show that: (1) very small sized particles with St = 0.01 can distribute both in the vortex core and around the vortex periphery, whereas intermediate sized particles with St = 1.0, 10 are distributed around the vortex periphery, and very large sized particles with St = 1000 do not feel the gas flow; (2) only at small Stokes number (St = 0.01, 0.1) the particles do not impact with the cylinder; (3) the particle's dispersion intensity decreases precipitously as St is increased from 0.01 to 10.
Keywords:Gas-particle  Discrete vortex method  Wake vortex  Particle distribution  Dispersion intensity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号