摘 要: | 针对海上风电场的快速发展,风电场故障预警得到了广泛的关注,精准、及时的对海上风电场的风电机组运行进行监测,实现故障精确预警是目前研究的热点问题。本研究将SCADA系统和GA-BP神经网络相结合建立了发电机绕组温度预测模型,并耦合灰色关联度分析法来筛选神经网络模型的输入层数据,确定模型的敏感性指标,基于统计学原理结合风电场评价指标和滑动窗口,计算海上风电场运行预警阈值,根据预警阈值与机组的评价指标确定风电场机组的运行状态,提出一种海上风电场故障预警方法,研究结果表明该模型能有效实现海上风电场故障预警,为海上风电场故障预警方法提供理论依据和技术支撑。
|