首页 | 本学科首页   官方微博 | 高级检索  
     

弯管液固两相流动冲蚀磨损的数值预测
引用本文:陈元达,叶晓浩,胡政,孙士平. 弯管液固两相流动冲蚀磨损的数值预测[J]. 失效分析与预防, 2022, 17(3): 169-176. DOI: 10.3969/j.issn.1673-6214.2022.03.005
作者姓名:陈元达  叶晓浩  胡政  孙士平
作者单位:1.南昌航空大学 航空制造工程学院,南昌 330063
摘    要:固体颗粒的冲蚀磨损是导致液体管道壁面磨损甚至失效的主要原因。本文基于计算流体动力学(CFD)方法,研究弯管在不同条件下冲蚀磨损分布规律。对8种常用的冲蚀模型分别进行计算评估,结果显示,基于DNV冲蚀模型的预测结果与实验结果吻合较好。基于DNV模型研究不同颗粒属性下弯管冲蚀磨损的分布规律。结果表明:随着颗粒直径从10 μm 增加到200 μm,最大磨损速率先减小后增大;当颗粒质量流量为0.02~0.20 kg/s 时,最大磨损速率随着颗粒质量流量的增大而线性增大;随着颗粒形状系数从0.2增加到1.0,最大磨损速率先增大后减小。研究结果可为实际工程应用提供一定的理论支撑。

关 键 词:流体动力学   弯管流动   冲蚀磨损   液固两相
收稿时间:2022-03-05

Numerical Prediction of Erosion Wears in Elbow for Liquid-solid Flow
CHEN Yuan-da,YE Xiao-hao,HU Zheng,SUN Shi-ping. Numerical Prediction of Erosion Wears in Elbow for Liquid-solid Flow[J]. Failure Analysis and Prevention, 2022, 17(3): 169-176. DOI: 10.3969/j.issn.1673-6214.2022.03.005
Authors:CHEN Yuan-da  YE Xiao-hao  HU Zheng  SUN Shi-ping
Abstract:Erosion wear of solid particles is the main reason for the wall wear and even failure of liquid pipeline. In this work, the erosion wear distribution of elbow under different influence factors was studied based on computational fluid dynamics (CFD) method. The results show that the prediction results based on DNV erosion model are in accordance with the experimental values. Furthermore, the erosion wear distribution of elbow under different solid particle properties was studied based on the DNV model. The results show that with the particle diameter increased from 10 μm to 200 μm, the maximum wear rate first drops and then rises. When the particle mass flow rate ranges from 0.02 to 0.20 kg/s, the maximum wear rate grows linearly with the increase of particle mass flow rate. With the particle shape coefficient enhanced from 0.2 to 1.0, the maximum wear rate first increases and then decreases. The research results can provide a theoretical support for the practical engineering application.
Keywords:
点击此处可从《失效分析与预防》浏览原始摘要信息
点击此处可从《失效分析与预防》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号