首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成深度神经网络流量预测的动态网络切片迁移算法
引用本文:唐伦, 周鑫隆, 吴婷, 王恺, 陈前斌. 基于集成深度神经网络流量预测的动态网络切片迁移算法[J]. 电子与信息学报, 2023, 45(3): 1074-1082. doi: 10.11999/JEIT220058
作者姓名:唐伦  周鑫隆  吴婷  王恺  陈前斌
作者单位:1.重庆邮电大学通信与信息工程学院 重庆 400065;;2.重庆邮电大学移动通信重点实验室 重庆 400065
基金项目:国家自然科学基金(62071078),重庆市教委科学技术研究项目(KJZD-M201800601),川渝联合实施重点研发项目(2021YFQ0053)
摘    要:针对5G网络切片(NS)场景下由于缺乏提前对物理网络资源进行感知而导致切片迁移滞后的问题,该文提出一种基于集成深度神经网络流量预测的动态切片调整和迁移算法(DSAM)。首先建立了基于计算、内存、带宽资源配置的网络总惩罚模型;其次,提出基于集成深度神经网络的流量预测算法预测未来网络流量情况,并根据流量类型的不同将其转换成对未来时刻物理网络的资源占用及切片的资源需求感知;最后,根据感知结果,以尽可能大地降低运营商惩罚为目标,通过动态切片调整和迁移策略将虚拟网络功能(VNF)和虚拟链路迁移到满足资源限制的物理节点和链路上。仿真结果表明,所提算法有效提高了切片迁移的效率和网络资源利用率。

关 键 词:流量预测   集成学习   切片迁移和调整   资源分配
收稿时间:2022-01-13
修稿时间:2022-05-23

Dynamic Network Slice Migration Algorithm Based on Ensemble Deep Neural Network Traffic Prediction
TANG Lun, ZHOU Xinlong, WU Ting, WANG Kai, CHEN Qianbin. Dynamic Network Slice Migration Algorithm Based on Ensemble Deep Neural Network Traffic Prediction[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1074-1082. doi: 10.11999/JEIT220058
Authors:TANG Lun  ZHOU Xinlong  WU Ting  WANG Kai  CHEN Qianbin
Affiliation:1. School of Communication and Information Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, China;;2. Key Laboratory of Mobile Communication Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China
Abstract:In order to solve the problem that slice migration lags behind by lacking awareness of physical network resources in 5G Network Slice (NS) scenarios, a Dynamic Slice Adjustment and Migration (DSAM) algorithm based on ensemble deep neural network traffic prediction is proposed. Firstly, a network total penalty model based on computing, memory and bandwidth resource allocation is established. Secondly, in order to predict the future traffic situation, a prediction algorithm based on ensemble deep neural network is proposed. Then the result of prediction are converted to perception of the physical network resource usage and resource requirements of slice in future according to the different types of traffic. Finally, in order to as large as possible to reduce operators punishment according to the result of perception, Virtual Network Functions (VNF) and virtual links are migrated to physical nodes and links that meet resource limits through dynamic slice adjustment and migration policies. The simulation results show that the proposed algorithm improves effectively the efficiency of slice migration and utilization of network resources.
Keywords:Flow prediction  Integrated learning  Slice migration and adjustment  Resources allocation
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号