首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应梯度压缩的高效联邦学习通信机制研究
引用本文:唐伦, 汪智平, 蒲昊, 吴壮, 陈前斌. 基于自适应梯度压缩的高效联邦学习通信机制研究[J]. 电子与信息学报, 2023, 45(1): 227-234. doi: 10.11999/JEIT211262
作者姓名:唐伦  汪智平  蒲昊  吴壮  陈前斌
作者单位:1.重庆邮电大学通信与信息工程学院 重庆 400065;2.重庆邮电大学移动通信技术重点实验室 重庆 400065
基金项目:国家自然科学基金(62071078), 重庆市教委科学技术研究项目(KJZD-M201800601), 川渝联合实施重点研发项目(2021YFQ0053)
摘    要:
针对物联网(IoTs)场景下,联邦学习(FL)过程中大量设备节点之间因冗余的梯度交互通信而带来的不可忽视的通信成本问题,该文提出一种阈值自适应的梯度通信压缩机制。首先,引用了一种基于边缘-联邦学习的高效通信(CE-EDFL)机制,其中边缘服务器作为中介设备执行设备端的本地模型聚合,云端执行边缘服务器模型聚合及新参数下发。
其次,为进一步降低联邦学习检测时的通信开销,提出一种阈值自适应的梯度压缩机制(ALAG),通过对本地模型梯度参数压缩,减少设备端与边缘服务器之间的冗余通信。实验结果表明,所提算法能够在大规模物联网设备场景下,在保障深度学习任务完成准确率的同时,通过降低梯度交互通信次数,有效地提升了模型整体通信效率。


关 键 词:联邦学习   边缘计算   通信优化   梯度压缩
收稿时间:2021-11-12
修稿时间:2022-04-22
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号