首页 | 本学科首页   官方微博 | 高级检索  
     

基于CUVE-PLS-DA的鸡蛋新鲜度在线检测分级
引用本文:王巧华,李小明,段宇飞.基于CUVE-PLS-DA的鸡蛋新鲜度在线检测分级[J].食品科学,2016,37(22):187-191.
作者姓名:王巧华  李小明  段宇飞
作者单位:1.华中农业大学工学院,湖北 武汉 430070; 2.华中农业大学 国家蛋品加工技术研发分中心,湖北 武汉 430070
基金项目:国家自然科学基金面上项目(31371771);湖北省科技支撑计划项目(2015BBA172);“十二五”国家科技支撑计划项目(2015BAD19B05);公益性行业(农业)科研专项(201303084)
摘    要:针对目前鸡蛋新鲜度检测技术方法存在劳动强度大、检测精度低、分级效率不足等缺陷,本研究在4 800 枚/h的禽蛋传输机上搭建了可见-近红外透射光谱(501~1 000 nm)在线检测装置,动态采集鸡蛋透射光谱数据,并建立光谱信息与鸡蛋哈夫值等级的偏最小二乘判别模型。采用3∶1原则对鸡蛋样本进行随机划分,其中校正集169 个,验证集57 个,通过比较多种光谱预处理方法以及两种特征波长选择方法,得出标准正态变换预处理方法和多模式共识方法能够有效地提高模型的正确率、运算效率和预测能力,优化模型后的校正集和验证集准确率分别为92.31%、91.23%。结果表明本实验建立的可见-近红外光谱透射光谱检测方法能够对鸡蛋的新鲜度进行无损、智能、在线检测分级。

关 键 词:鸡蛋  新鲜度  在线检测  偏最小二乘判别法  多模式共识法  
收稿时间:2016-04-17

On-Line Detection and Classification of Egg Freshness Based on Consensus Uninformative Variable Elimination-Partial Least Squares-Discriminant Analysis (CUVE-PLS-DA)
WANG Qiaohua,LI Xiaoming,DUAN Yufei.On-Line Detection and Classification of Egg Freshness Based on Consensus Uninformative Variable Elimination-Partial Least Squares-Discriminant Analysis (CUVE-PLS-DA)[J].Food Science,2016,37(22):187-191.
Authors:WANG Qiaohua  LI Xiaoming  DUAN Yufei
Affiliation:1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; 2. National Egg Processing Technology Research and Development Sub-centers, Huazhong Agricultural University, Wuhan 430070, China
Abstract:Although there are many methods available to detect egg freshness at present, they have shortcomings including laboriousness, low precision and low classification efficiency. An on-line monitoring device based on visible/near infrared spectroscopy (501–1 000 nm) was fitted to the 4 800 eggs per hour egg transport machine for the purpose of dynamically collecting transmittance spectral data for eggs. The collected data were used to establish a partial least squares discriminant (PLS-DA) model for the Haugh unit value of eggs. A total of 226 egg samples were randomly divided into two set: calibration set (n = 169) and validation set (n = 57). By compared different spectral pretreatments and two wavelength selection methods, it was found that standard normal variate (SNV) transformation and multi-pattern consensus method could effectively improve the accuracy, efficiency and predictive ability of the PLS-DA model. The final calibration and validation accuracy were 92.31% and 91.23%, respectively. This study showed that visible-near infared spectroscopy could be used as a real-time and non-destructive detection method to classify egg freshness.
Keywords:egg  freshness  online  partial least squares  multi-pattern  
本文献已被 CNKI 等数据库收录!
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号