首页 | 本学科首页   官方微博 | 高级检索  
     

地震信息的属性参数提取和砂体预测方法
引用本文:黄真萍 王晓华. 地震信息的属性参数提取和砂体预测方法[J]. 石油地球物理勘探, 1997, 32(5): 669-682
作者姓名:黄真萍 王晓华
作者单位:大庆石油学院勘探系
摘    要:在利用地震信息属性参数进行砂体预测时,仅用单一参数预测的结果往往精度很差,而盲目使用多参数作为神经网络的输入,又会使网络的学习过程不收敛。为克服上述问题,本文通过理论模型研究,并结合实际地震资料,从时间域和频率域中提取了目的层的19个地震信息属性参数。然后,选取与薄砂层厚度最密切的8种参数进行砂体预测。文中对几种常用的预测方法进行了分析和对比。应用结果表明,多参数的神经网络预测方法的精度最高;主频

关 键 词:地震信息 属性参数 地震勘探 砂体预测 砂岩

Method for making both seismic attributive parameter extraction and sand body prediction
Huang Zhenping, Wang Xiaohua and Wang Yunzkuan.. Method for making both seismic attributive parameter extraction and sand body prediction[J]. Oil Geophysical Prospecting, 1997, 32(5): 669-682
Authors:Huang Zhenping   Wang Xiaohua  Wang Yunzkuan.
Abstract:Single parameter prediction usually brings poor accuracy in the sand body prediction that is achieved by using seismic attributive parameters. Nevertheless, blindusing the multiple parameters as the input of neural network will make nonconvergent the learning course of the neural network.After theoretical model research,19 seismic attributive parameters in time and frequency domains can be derived fromthe seismic informations of objective interval so as to cope with above problems.Then 8 parameters which are very related to sand body thickness are used to predictsand bodies. In addition, the usual prediction methods are analysed and comparedin detail.The trial results draw the conclusion: multiparameter neural network prediction brings satisfactory accuracy, dominant-frequency linear predicti0n and amplitude-frequency inversion prediction give less satisfactory accuracy, and amplitudelinear prediction causes poor accuracy. When the objective interval is thicker than/4, sand thickness prediction using frequency-domain parameters is more accuratethan sand thickness prediction that introduces time-domain parameters.
Keywords:seismic information   attributive parameters   theoretical model  neural network   sand body prediction
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号