首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进多尺度主元分析的丙烯聚合过程监测与故障诊断
引用本文:夏陆岳,潘海天,周猛飞,蔡亦军,孙小方. 基于改进多尺度主元分析的丙烯聚合过程监测与故障诊断[J]. 化工学报, 2011, 62(8): 2312-2317. DOI: 10.3969/j.issn.0438-1157.2011.08.039
作者姓名:夏陆岳  潘海天  周猛飞  蔡亦军  孙小方
作者单位:浙江工业大学化学工程与材料学院,浙江 杭州 310032
基金项目:国家高技术研究发展计划项目,浙江省自然科学基金项目
摘    要:针对工业过程故障检测问题,提出了一种改进多尺度主元分析方法。首先针对过程数据所具有的随机性、非平稳性及含有大量噪声等特点,提出了一种改进小波变换阈值去噪方法,移除原始过程数据中的大部分高频随机噪声,提高数据的置信度,然后应用小波多尺度分解将每个变量依次分解成逼近系数和多个尺度的细节系数,在各个尺度矩阵建立相应的主元分析模型,以模型统计量控制限为阈值,对小波系数重构得到综合尺度主元分析模型。将该改进多尺度主元分析方法应用于丙烯聚合过程监测与故障诊断研究中,研究结果表明,与传统多尺度主元分析相比,改进多尺度主元分析减少了误报率和漏报率,提高了过程监测与故障诊断的精度。

关 键 词:小波阈值去噪  多尺度主元分析  过程监测  故障诊断  丙烯聚合

Process monitoring and fault diagnosis of propylene polymerization based on improved multiscale principal component analysis
XIA Luyue,PAN Haitian,ZHOU Mengfei,CAI Yijun,SUN Xiaofang. Process monitoring and fault diagnosis of propylene polymerization based on improved multiscale principal component analysis[J]. Journal of Chemical Industry and Engineering(China), 2011, 62(8): 2312-2317. DOI: 10.3969/j.issn.0438-1157.2011.08.039
Authors:XIA Luyue  PAN Haitian  ZHOU Mengfei  CAI Yijun  SUN Xiaofang
Abstract:In order to handle the problem of fault detection for industrial process,an improved multiscale principal component analysis(MSPCA)is proposed.Firstly,considering the nonstationary and random nature of data in the process industry which contains different noises inevitably,an improved wavelet threshold denoising method which combines multiple wavelet transform with a new threshold function based on the characteristics of wavelet analysis is proposed.The data collected from the industry condition are processed by means of the improved wavelet threshold denoising method.Using wavelets,the individual variable is decomposed into approximations and details at different scales.Contributions from each scale are collected in separate matrices,and a PCA model is then constructed to extract correlation at each scale.According to the simulation of propylene polymerization,and comparing the improved MSPCA with traditional MSPCA,it shows that the improved MSPCA has enhanced the accuracy of process monitoring and fault diagnosis.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号