首页 | 本学科首页   官方微博 | 高级检索  
     


Ultra-high heating rate densification of nanocrystalline magnesia at high pressure and investigation on densification mechanisms
Affiliation:1. School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;2. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Abstract:The pressure-assisted densification method based on combustion reaction heating was applied to prepare dense nanocrystalline ceramics. The densification process of magnesia compact with a particle size of 50 nm was investigated, under the pressure range of 0–170 MPa, and the temperature range of 1620–1880 K with ultra-high heating rate (above 1600 K/min). The pressure was found to have an effect on enhancing densification while suppressing grain growth, and the higher sintering temperature lead to the larger grain size and lower density of the compact. Pure magnesia nanocrystalline ceramics with a relative density of 99.1% was obtained at 1620 K and 170 MPa, and the concurrent grain growth was almost completely restrained. Furthermore, the investigation on the pressure-dependent densification mechanisms including plastic flow, diffusion and power-law creep was also carried out. The result indicated the rate-controlling mechanism was the plastic flow accommodated by grain-boundary diffusion creep.
Keywords:Heating rate  Densification  Nanocrystalline ceramics  Plastic deformation  Grain growth
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号