首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of microwave sintering on dielectric properties of screen printed Ba0.6Sr0.4TiO3 thick films
Affiliation:1. Institute of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany;2. Institute of Materials for Electrical and Electronic Engineering, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany;3. Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;4. Institute for Applied Materials (IAM-WPT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;1. Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, Sfax 3000, Tunisia;2. Institut Néel, CNRS, Université Joseph Fourier, BP 166, 38042 Grenoble, France;1. Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China;2. School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea;3. Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;4. Department of Chemical Engineering & Materials Science, University of California, Davis, CA 95616, USA;5. State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China;1. Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, B.P. 802, Université de Sfax, Sfax 3018, Tunisia;2. Faculté des Sciences et Techniques de Sidi Bouzid, Université de Kairouan, Campus Cité Agricole 9100, Kairouan, Tunisia;3. Physics Department, Rabigh College of Science and Art, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia;4. Institut Néel, CNRS et Université Joseph Fourier, BP 166, Grenoble cedex 9, F-38042, France;1. Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, Route de Soukra km 3, 3000 Sfax, Tunisia;2. Centre de Recherches en Numérique de Sfax, Cité El Ons, Route de Tunis, Km 9, Sfax. BP 275, Sakiet Ezzit, 3021 Sfax, Tunisia;1. V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky Pr., 03028 Kyiv, Ukraine;2. Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01601 Kyiv, Ukraine;3. Institute of Applied Physics, Russian Academy of Sciences, 46 Ul׳yanov St., Nizhny Novgorod 603950, Russia
Abstract:The influence of 30 GHz microwave sintering compared to conventional sintering has been investigated on polycrystalline Ba0.6Sr0.4TiO3 (BST60) thick films with respect to an application as tunable dielectrics. The BST thick films were prepared as metal–insulator–metal (MIM) capacitors on alumina substrates. The average grain size (440 nm) and the porosity (approx. 30%) of the sintered films are only little affected by the sintering method. However, permittivity, dielectric loss and tunability have been influenced substantially. The dielectric improvement by microwave sintering is interpreted in terms of an increased crystal quality (ξS) and/or a decrease of defect concentrations. It is assumed that microwave sintering preferably heats up parts of the film where an increased defect density exists and therefore causes a selective heating process. This may heal up charged defects, inhomogeneities, and structural defects.
Keywords:BST  Thick film  Grain size  Microwave sintering  Vendik model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号