首页 | 本学科首页   官方微博 | 高级检索  
     


State estimation of nonlinear dynamical systems using nonlinear update based Unscented Gaussian Sum Filter
Affiliation:1. Systems and Control Engineering, Indian Institute of Technology Bombay, Mumbai, India;2. Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
Abstract:Two attractive features of Unscented Kalman Filter (UKF) are: (1) use of deterministically chosen points (called sigma points), and (2) only a linear dependence of the number of sigma points on the number of states. However, an implicit assumption in UKF is that the prior conditional state probability density and the state and measurement noise densities are Gaussian. To avoid the restrictive Gaussianity assumption, Gaussian Sum-UKF (GS-UKF) has been proposed in literature that approximates all the underlying densities using a sum of Gaussians. However, the number of sigma points required in this approach is significantly higher than in UKF, thereby making GS-UKF computationally intensive. In this work, we propose an alternate approach, labeled Unscented Gaussian Sum Filter (UGSF), for state estimation of nonlinear dynamical systems, corrupted by Gaussian state and measurement noises. Our approach uses a Sum of Gaussians to approximate the non-Gaussian prior density. A key feature of this approximation is that it is based on the same number of sigma points as used in UKF, thereby resulting in similar computational complexity as UKF. We implement the proposed approach on two nonlinear state estimation case studies and demonstrate its utility by comparing its performance with UKF and GS-UKF.
Keywords:Nonlinear state estimation  Unscented Kalman Filter  Sum of Gaussians
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号