首页 | 本学科首页   官方微博 | 高级检索  
     

面向高光谱影像分类的多特征流形鉴别嵌入
引用本文:黄鸿,李政英,石光耀,潘银松. 面向高光谱影像分类的多特征流形鉴别嵌入[J]. 光学精密工程, 2019, 27(3): 726-738. DOI: 10.3788/OPE.20192703.0726
作者姓名:黄鸿  李政英  石光耀  潘银松
作者单位:重庆大学光电技术与系统教育部重点实验室,重庆,400044;重庆大学光电技术与系统教育部重点实验室,重庆,400044;重庆大学光电技术与系统教育部重点实验室,重庆,400044;重庆大学光电技术与系统教育部重点实验室,重庆,400044
基金项目:国家自然科学基金资助项目(No.41371338);重庆市基础研究与前沿探索项目资助(No.cstc2018jcyjAX0093);重庆市研究生科研创新项目资助(No.CYS18035)
摘    要:鉴于传统维数约减方法对高光谱遥感影像进行降维时,往往只利用了单一的光谱特征,限制了分类性能的提升。提出一种基于多特征流形鉴别嵌入的维数约减方法,该方法首先提取高光谱数据的LBP(Local Binary Patterns)纹理特征,然后利用样本点的光谱-LBP特征联合距离及类别信息构建类内图和类间图以发现高光谱影像中的鉴别流形结构,在低维嵌入空间中不仅保持来自同一像素的光谱和纹理特征的相似性,而且使同类点尽可能紧致、不同类点远离,实现空-谱联合低维鉴别特征提取,以有效提高地物分类性能。在Indian Pines和黑河高光谱遥感数据集上的实验表明,本文算法的分类精度在不同实验条件下均优于传统的维数约减方法,其分类精度可达95.05%和96.20%,在较少训练样本条件下优势更为明显,有利于实际应用。

关 键 词:高光谱遥感  维数约减  纹理特征  多特征学习  流形学习
收稿时间:2018-09-14

Multi-features manifold discriminant embedding for hyperspectral image classification
HUANG Hong LI Zheng-ying SHI Guang-yao PAN Yin-song. Multi-features manifold discriminant embedding for hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 726-738. DOI: 10.3788/OPE.20192703.0726
Authors:HUANG Hong LI Zheng-ying SHI Guang-yao PAN Yin-song
Affiliation:Key Laboratory of Optoelectronic Technique System of the Ministry of Education, Chongqing University, Chongqing 400044, China
Abstract:The traditional Dimensionality Reduction (DR) methods consider the spectral features but ignores useful spatial information in HSI. To overcome this problem, this paper proposed a new dimensionality reduction method called Multi-Feature Manifold Discriminant Embedding (MFDE). First, the MFDE method extracted the features of the local binary pattern from HSI data. Next, the with-class and between-class graphs were constructed using sample labels to exploit the local manifold structure. Then, an optimal object function was designed to learn the combined spatial-spectral features by compacting the intra-class samples and simultaneously separating the inter-class samples. Thus, the discriminative ability of embedding features was improved. Experimental results in the Indian Pines and Heihe hyperspectral data sets show that the proposed MFDE method performs better than some state-of-the-art DR methods in most cases and achieves an overall classification accuracy of 95.05% and 96.20%, respectively. Its advantage is more significant for less training samples, making it more conducive to practical applications.
Keywords:Hyperspectral remote sensing   Dimensionality reduction   Texture feature  Multiple features learning   Manifold learning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号