首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的光场加密图像恢复技术
引用本文:朱震豪,韩思敏,张薇. 基于深度学习的光场加密图像恢复技术[J]. 光学仪器, 2019, 41(4): 1-7
作者姓名:朱震豪  韩思敏  张薇
作者单位:上海理工大学光电信息与计算机工程学院,上海,200093;上海理工大学光电信息与计算机工程学院,上海,200093;上海理工大学光电信息与计算机工程学院,上海,200093
基金项目:国家重点研发计划资助课题(2016YFF0101402),国家自然科学基金项目(61205015)
摘    要:光场技术可以将图像加密从二维提升到三维,加强加密的安全性。采用重聚焦算法实现图像解密时会引入图像间的干扰。以深度学习技术为框架,分析图像干扰的规律性,构造模拟光场数据集,创建了一个7层的全卷积神经网络,以模拟光场数据集作为输入,原图作为标签,训练一个全卷积神经网络,将真实光场解密图像输入得到结果。实验结果表明,利用全卷积神经网络可以有效改善光场解密图像的干扰问题,改善解密后的图像质量。

关 键 词:光场技术  深度学习  图像加密  全卷积神经网络  图像处理
收稿时间:2018-09-22

Light field multi-decryption image improvement algorithm based on deep learning
ZHU Zhenhao,HAN Simin and ZHANG Wei. Light field multi-decryption image improvement algorithm based on deep learning[J]. Optical Instruments, 2019, 41(4): 1-7
Authors:ZHU Zhenhao  HAN Simin  ZHANG Wei
Affiliation:School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China,School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China and School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:Light field technology can boost image encryption technology from two-dimensional to three-dimensional, and enhance the security of encryption. The refocusing algorithm can be used to achieving image decryption. However, it will introduce interference between images. Based on the deep learning technology, the regularity of image interference is analyzed. The simulated light field data set is constructed. This paper creats a 7-layer full convolutional neural network. As for training the full convolutional neural network, the simulated light field data set is used as input, while the original images are used as labels and input into the full convolutional neural network. Then the real light field decrypted images are input to for testing. The experimental results show that the full convolutional neural network can decrease the interference of the optical field decrypted images obviously and improve the image quality effectively.
Keywords:light field technology  deep learning  image encryption  fully convolutionalneural network  image processing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学仪器》浏览原始摘要信息
点击此处可从《光学仪器》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号