首页 | 本学科首页   官方微博 | 高级检索  
     


A new two-stage design of feedback controllers for a hydrogen gas reformer
Authors:Verica Radisavljevic-Gajic  Patrick Rose
Affiliation:Villanova University, Department of Mechanical Engineering, 800 E. Lancaster Avenue, Villanova, PA 19085, USA
Abstract:In this paper we have first reviewed operations of a hydrogen gas reformer and provided its linearized mathematical model. Then, we have simplified an existing algorithm for a two-stage design of feedback controllers for linear continuous-time time-invariant systems. The proposed design significantly reduces the computational requirements and provides flexibility of designing different type of controllers for different dynamic parts of the system. Since the hydrogen gas reformer (also known as a fuel processing system) possesses slow and fast modes (state variables), the newly proposed design is further simplified and specialized for this class of systems. The obtained algorithm is efficiently applied with very high accuracy to the hydrogen gas reformer. As a matter of fact, the eigenvalue placement problem is solved for the reformer dynamics for both slow and fast modes. The design is so flexible that combined hybrid controllers (optimal, robust, set-point, eigenvalue assignment controllers or any other linear controller) can be designed independently for particular subsystems of the hydrogen gas reformer. The hybrid linear feedback controller design for the hydrogen gas reformer that optimizes its slow subsystem and assigns the desired eigenvalues to its fast subsystem is also presented in the paper.
Keywords:Hydrogen gas reformer  Fuel processing system  Linear feedback controllers  Two-stage design  Systems with slow and fast modes  PEM fuel cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号