首页 | 本学科首页   官方微博 | 高级检索  
     

快速AVS2帧内预测选择算法
引用本文:赵超,赵海武,王国中,李国平,滕国伟. 快速AVS2帧内预测选择算法[J]. 计算机应用, 2015, 35(11): 3284-3287. DOI: 10.11772/j.issn.1001-9081.2015.11.3284
作者姓名:赵超  赵海武  王国中  李国平  滕国伟
作者单位:上海大学 通信与信息工程学院, 上海 201900
基金项目:国家自然科学基金资助项目(61271212);上海市自然基金资助项目(14ZR1415200).
摘    要:针对目前数字音视频编解码技术标准(AVS2)中帧内预测模式判断过程计算较为复杂,而如今超高清视频的普及给编解码系统带来很大压力的问题,提出了一种快速帧内预测选择算法.该算法先对最底层最小编码单元(SCU)进行预测模式删选,减少了底层SCU的计算量;再通过下层编码单元(CU)的预测模式得到上层CU的预测模式,从而减少了上层CU的计算量.实验表明,该算法对压缩效率的影响很小,并且编码时间平均下降超过15%,并可有效地降低帧内编码的复杂度.

关 键 词:数字音视频编解码技术标准  四叉树  帧内预测模式  编码单元  
收稿时间:2015-05-16
修稿时间:2015-07-16

Fast selection algorithm for intra prediction in AVS2
ZHAO Chao,ZHAO Haiwu,WANG Guozhong,LI Guoping,TENG Guowei. Fast selection algorithm for intra prediction in AVS2[J]. Journal of Computer Applications, 2015, 35(11): 3284-3287. DOI: 10.11772/j.issn.1001-9081.2015.11.3284
Authors:ZHAO Chao  ZHAO Haiwu  WANG Guozhong  LI Guoping  TENG Guowei
Affiliation:School of Communication and Information Engineering, Shanghai University, Shanghai 201900, China
Abstract:For Audio Video coding Standard Ⅱ(AVS2) intra-prediction mode determination process is complicated to calculate, and the popularity of ultra-high definition video put encoding and decoding system under great pressure, a kind of fast intra prediction algorithm was presented in this paper. The algorithm selected the part of the Smallest Coding Unit (SCU) prediction mode,reducing the amount of computation of the underlying SCU, and then the upper layer Coding Unit (CU) obtained the prediction mode by the lower CU prediction mode, thereby reducing the amount of computation of the upper CU. The experimental results show that the impact on the compression efficiency of the algorithm is very small, the encoding time on average decreases more than 15 percent, and can effectively reduce the complexity of intra-coding.
Keywords:Audio Video coding Standard Ⅱ (AVS2)   quadtree   intra prediction mode   Coding Unit (CU)
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号