首页 | 本学科首页   官方微博 | 高级检索  
     


Qos-aware mobile service optimization in multi-access mobile edge computing environments
Abstract:With the rapid development of mobile Internet technologies and various new service services such as virtual reality (VR) and augmented reality (AR), users’ demand for network quality of service (QoS) is getting higher and higher. To solve the problems of high load and low latency in-network services, this paper proposes a data caching strategy based on a multi-access mobile edge computing environment. Based on the MEC collaborative caching framework, an SDN controller is introduced into the MEC collaborative caching framework, a joint cache optimization mechanism based on data caching and computational migration is constructed, and the user-perceived time-lengthening problem in the data caching strategy is solved by a joint optimization algorithm based on an improved heuristic genetic algorithm and simulated annealing. Meanwhile, this paper proposes a multi-base station collaboration-based service optimization strategy to solve the problem of collaboration of computation and storage resources due to multiple mobile terminals and multiple smart base stations. For the problem that the application service demand in MEC server changes due to time, space, requests and other privacy, an application service optimization algorithm based on the Markov chain of service popularity is constructed, and a deep deterministic strategy (DDP) based on deep reinforcement learning is also used to minimize the average delay of computation tasks in the cluster while ensuring the energy consumption of MEC server, which improves the accuracy of application service cache updates in the system as well as reducing the complexity of service updates. The experimental results show that the proposed data caching algorithm weighs the cache space of user devices, the average transfer latency of acquiring data resources is effectively reduced, and the proposed service optimization algorithm can improve the quality of user experience.
Keywords:Multi-access edge computing  Data caching  Genetic algorithms  Deep reinforcement learning  Service optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号