首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of the flow field and scour evolution by turbulent wall jets under a sluice gate
Affiliation:Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri 65211, USA
Abstract:This numerical study of scour process tested the skills of computational fluid dynamics in modeling the unsteady flow field during the scour development stage by two-dimensional turbulent wall jets under a sluice gate. The modeling was found to well describe the experimentally observed flow patterns, that is, the main jet diverged to a returning jet and a tail jet. The model also correctly predicts the evolution of the scour depth and length. We examined the self-similarity of the profiles of scour bed and overlying velocities throughout the entire scour development and equilibrium stages. We found self-preserved profiles of velocities and scour beds using local jet parameters. Four growth curves were compared in describing the temporal evolution of scour depth. Finally, non-dimensional scaling of the equilibrium maximal scour depth was investigated. We used the theory of wall jet, and suggested that a modified jet Froude number can be used to predict the equilibrium scour depth, which accounts for the attenuation of the jet velocities along the apron.
Keywords:Wall jet  Scour  Turbulence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号