首页 | 本学科首页   官方微博 | 高级检索  
     


A novel integrated control framework of AFS,ASS, and DYC based on ideal roll angle to improve vehicle stability
Affiliation:1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China;3. Chongqing Changan New Energy Automobile Technology Co., Ltd., Chongqing 400023, China;1. State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;2. School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore;3. Department of Mechanical and Electromechanical Engineering, National ILan University, ILan 26041, Taiwan;4. Huazhong University of Science and Technology – Wuxi Research Institute, Wuxi 214000, China;5. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430072, China;1. School of Economics and Management, Beihang University, Beijing 100191, China;2. Key Laboratory of Complex System Analysis, Management and Decision (Beihang University), Ministry of Education, Beijing 100191, China;3. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
Abstract:The current research on vehicle stability control mainly focuses on following the ideal yaw rate and sideslip angle, without considering the potential of ideal roll angle in improving the vehicle stability. In addition, the mutation of tire-road friction coefficient promotes a great challenge to the stability control. To improve the vehicle stability, in this study, firstly, the three-dimensional stability region of “lateral speed-yaw rate-roll angle” was studied, and a method to determine the ideal roll angle was proposed. Secondly, a novel integrated control framework of AFS, ASS, and DYC based on ideal roll angle was proposed to actively control the front tire slip angles, suspension forces, and motor torques: In the upper-level controller, model predictive control and tire force distribution algorithm were used to obtain the optimal four-tire longitudinal forces, front tire lateral forces and additional roll moment under constraints; In the lower-level controller, the upper virtual target was realized by the optimal allocation algorithm of actuators and the tire slip controller. Finally, the proposed control framework was verified on the varied-µ road. The results indicated that compared with the two existing control strategies, the proposed framework can significantly improve the vehicle following performance and stability.
Keywords:Ideal roll angle  Integrated control  Optimal allocation  Varied-µ road  Stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号