首页 | 本学科首页   官方微博 | 高级检索  
     


High-humidity hot air impingement blanching (HHAIB): An emerging technology for tomato peeling
Affiliation:1. College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China;2. Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India;3. Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, Davis, CA 95616, USA;4. School of Artificial Intelligence, Beijing Technology and Business University, Beijing, China;5. Shandong Academy of Agricultural Machinery Sciences, Jinan 250100, China,;6. Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
Abstract:Peeling is an essential operation for tomato processing. A new peeling method, high-humidity hot air impingement blanching (HHAIB) heating technology, was developed as an alternative to the conventional lye and hot-water peeling to eliminate the use of chemicals and the discharge of wastewater. The current work explored the feasibility of HHAIB for tomato peeling. The effects of heating temperature (100–120 °C), relative humidity (20%–40%) and heating time (0–180 s) on the peeling performance were investigated. The optimum treatment was found to be 110 °C heating temperature in combination with 40% of relative humidity and 75 s treatment time, which resulted in lower peeling loss, firmness loss and color deterioration compared with other HHAIB conditions that achieved 100% peelability. The comparative study of optimized HHAIB peeling with conventional lye and hot-water peeling showed that HHAIB peeled tomato obtained lower peeling loss and firmness loss, and higher preservation of phytochemicals, antioxidant capacity and color. In addition, compared with fresh tomatoes, HHAIB processing increased the antioxidant activity, lycopene, and total phenolic content in peeled tomatoes by 16.01%, 10.46%, 12.80%, respectively. The laser scanning confocal microscopy image of fresh tomato skin surface and the scanning electron microscope images of peels and flesh showed that HHAIB caused cracking of the epidermis and melting of the cuticular membrane while reduced the serious damage of flesh.Industrial practicePeeling is a necessary step in tomato processing, which impacts subsequent processing efficiency and product quality. At present, the most common used peeling methods in the industry are hot water or/and alkali peeling, but it induces the loss of water-soluble nutrients, chemical residues and waste liquid treatment. Therefore, the industry urgently needs an alternative peeling technology. The current work shows that HHAIB is a very promising peeling technology as it not only has an excellent peeling performance, but also enhances the preservation of phytochemicals, antioxidant capacity and quality attributes compared to conventional lye and hot-water peeling.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号