首页 | 本学科首页   官方微博 | 高级检索  
     


Nodal Superconvergence of SDFEM for Singularly Perturbed Problems
Authors:Fatih Celiker  Zhimin Zhang  Huiqing Zhu
Affiliation:1. Department of Mathematics, Wayne State University, Detroit, MI, 48202, USA
2. Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
Abstract:In this paper, we analyze the streamline diffusion finite element method for one dimensional singularly perturbed convection-diffusion-reaction problems. Local error estimates on a subdomain where the solution is smooth are established. We prove that for a special group of exact solutions, the nodal error converges at a superconvergence rate of order (ln ε −1/N)2k (or (ln N/N)2k ) on a Shishkin mesh. Here ε is the singular perturbation parameter and 2N denotes the number of mesh elements. Numerical results illustrating the sharpness of our theoretical findings are displayed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号