The effects of amine additives and flow rate on the performance of mixed-bed ion exchange at ultralow concentrations |
| |
Authors: | Byeong Il Noh Gang Choon Lee Tae Kyung Yoon |
| |
Affiliation: | (1) Dept. of Chemical. Eng., Dongseo Univ., 617-010 Busan, Korea;(2) Dept. of Environmental. Eng., Dongeui Univ., 614-714 Busan, Korea |
| |
Abstract: | Experimental data were obtained to evaluate the effects of amine additives for pH control of solution and the volumetric flow rate of feed solution on the performance of mixed-bed ion exchange for the removal of ionic impurities in solution. The experiments were performed under various temperatures and cation resin ratios by using a continuous column system with NaCl solution. The breakthrough curves of ions, plotted as the ratio of the effluent to influent concentration versus run time or treated solution volume, give detailed results about the effects of the existence of the pH controller, such as ammonia and morpholine, and the variable flow rate on the fate of each ion in the units. The experimental results show that the morpholine breakthrough occurs earlier than the ammonia breakthrough and that the effect of ammonia on both sodium and chloride exchange rates is more significant than that of morpholine. The addition of ammonia in solution results in the decrease of cation resin capacity for the sodium removal much more than the addition of morpholine. The step changes in the flow rate affect significantly the shapes of sodium and chloride breakthrough curves. The effluent concentrations of sodium and chloride change according to the flow rate. However, the effect increases with decreasing operation capacity of cation resin, while it becomes serious around the breakthrough time of chloride and negligible after the time. |
| |
Keywords: | (Mixed-bed) Ion Exchange Amine Additives pH Controllers Ultrapure Water Volumetric Flow Rate |
本文献已被 SpringerLink 等数据库收录! |
|