首页 | 本学科首页   官方微博 | 高级检索  
     

大坝变形的小波分析与ARMA预测模型
引用本文:罗德河,郑东健. 大坝变形的小波分析与ARMA预测模型[J]. 水利水运工程学报, 2016, 0(3): 70-75
作者姓名:罗德河  郑东健
作者单位:1.河海大学水利水电学院,水资源高效利用与工程安全国家工程研究中心,江苏南京
基金项目:国家自然科学基金资助项目(51279052,51579085)
摘    要:大坝变形观测资料可视为非平稳时间序列,从影响大坝变形规律的因素出发,可将其分解为主值函数项、周期函数项和改进后的平稳时间序列。其中主值函数项采用逐步回归法拟合,针对时效因子采用半经验公式无法准确拟合实际变化情况,采用小波分析法将序列分解为低频和高频两部分信号,其中低频部分代表时效等因素影响的变形趋势;高频部分代表水位、温度等影响的变化规律,应用时间序列原理分别建立变形预测ARMA(p,q)模型,从而在现有水位、温度观测资料下预测坝体未来的变形趋势。实例计算结果表明,结合小波分析的时间序列法建立的预测模型,预测精度高于统计回归分析,预测效果良好,可作为一种有效方法应用于大坝变形预测中。

关 键 词:大坝   时间序列分析   小波分析   ARMA模型   回归分析   变形预测

Wavelet analysis and ARMA prediction model for dam deformation
LUO De-he and ZHENG Dong-jian. Wavelet analysis and ARMA prediction model for dam deformation[J]. Hydro-Science and Engineering, 2016, 0(3): 70-75
Authors:LUO De-he and ZHENG Dong-jian
Affiliation:1.National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing
Abstract:Dam deformation observation data can be regarded as non-stationary time series, and considering the influence factors of dam deformation, it can be decomposed into principal value function terms, periodic function terms and improved stationary time series. As the semi-empirical formula of time effect factors can not accurately fit the actual changes, a wavelet analysis is made to decompose the series into low frequency and high frequency signals: the low frequency signal represents time effect deformation trend while the high frequency signal represents the changes in water level and temperature. Then the deformation prediction ARMA model can be established by the time series analysis. The tendency of dam deformation can be predicted based on the water level and temperature observation data in the future. The actual calculated results show that the prediction reliability which is established by the time series analysis method is better than that by the regression analysis model; and the wavelet analysis method can be used as an effective method for dam deformation prediction.
Keywords:dam   time series analysis   wavelet analysis   ARMA model   regression analysis   deformation prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《水利水运工程学报》浏览原始摘要信息
点击此处可从《水利水运工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号