首页 | 本学科首页   官方微博 | 高级检索  
     

混沌粒子群算法及其在发电资源调度中的应用
引用本文:李笑雪. 混沌粒子群算法及其在发电资源调度中的应用[J]. 计算机应用研究, 2011, 28(5): 1707-1709. DOI: 10.3969/j.issn.1001-3695.2011.05.032
作者姓名:李笑雪
作者单位:河南财经政法大学,计算机与信息工程学院,郑州,450002
摘    要:为了有效地解决水火电力系统资源短期优化调度问题,提出了一种基于混沌粒子群算法的调度方案。设计了水火电力系统资源调度问题的数学模型,给出了混沌粒子群调度算法的框架,通过引入最优粒子的混沌搜索机制、优势粒子和劣势粒子的权重自适应调节机制,从而使算法具有动态自适应性,能够较容易地跳出局部最优。实验结果表明,本算法方案能有效解决水火发电资源调度问题,具有较好的应用价值。

关 键 词:混沌搜索; 粒子群优化算法; 水火电力系统; 发电资源调度问题
收稿时间:2010-11-08
修稿时间:2011-04-13

Novel gridchaos searching particle swarm optimization algorithm and its application in hydrothermal power resources scheduling
LI Xiao-xue. Novel gridchaos searching particle swarm optimization algorithm and its application in hydrothermal power resources scheduling[J]. Application Research of Computers, 2011, 28(5): 1707-1709. DOI: 10.3969/j.issn.1001-3695.2011.05.032
Authors:LI Xiao-xue
Affiliation:(College of Computer & Information Engineering, Henan University of Economics & Law, Zhengzhou 450002, China)
Abstract:To solve hydrothermal power system resource short-term optimization scheduling problem ,a novel scheduling solution based on chaos particle swarm optimization algorithm was proposed. The mathematical model of hydrothermal power system resource scheduling problem was expound, the framework of chaos particle swarm optimization algorithm was given, the chaotic search mechanism for the optimal particle and the weight self-adaptive adjustment mechanism for advantage particles and disadvantage particles were introduced to make proposed algorithm easily jump out of local optimum with effective dynamic adaptability. Experimental result shows that proposed algorithm can solve the scheduling problem of hydrothermal power system resource ,and has the advantage of good application value.
Keywords:gridchaos search   particle swarm optimization algorithm   hydrothermal power system   power system resource scheduling problem
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号