首页 | 本学科首页   官方微博 | 高级检索  
     

流形排序算法预测microRNA*
引用本文:王常武,刘兵强,王宝文,刘文远. 流形排序算法预测microRNA*[J]. 计算机应用研究, 2012, 29(3): 819-822
作者姓名:王常武  刘兵强  王宝文  刘文远
作者单位:燕山大学信息科学与工程学院,河北秦皇岛,066004
基金项目:国家自然科学基金资助项目(60970123)
摘    要:在已知microRNA(miRNA)较少的情况下,为了提高算法预测的准确性,提出一种基于流形排序的miR-NA预测算法。该算法采用加权图模型描述序列,使用置信传播分配排序分数,降低了算法的时间复杂度;算法根据大规模数据内部全局流形结构进行排序,提高了排序结果的准确性。在人类和按蚊全基因组范围内的实验证明,流形排序算法的预测效果优于传统的预测方法,可以作为预测miRNA的一个有效工具。

关 键 词:微小RNA  加权图  置信传播  流形排序  预测  生物信息学

MicroRNA prediction based on manifold ranking
WANG Chang-wu,LIU Bing-qiang,WANG Bao-wen,LIU Wen-yuan. MicroRNA prediction based on manifold ranking[J]. Application Research of Computers, 2012, 29(3): 819-822
Authors:WANG Chang-wu  LIU Bing-qiang  WANG Bao-wen  LIU Wen-yuan
Affiliation:(College of Information Science & Engineering, Yanshan University, Qinhuangdao Hebei 066004, China )
Abstract:In order to improve the precision of microRNA prediction while the number of known microRNAs is small,this paper proposed a novel microRNA prediction algorithm based on manifold ranking.The algorithm adopted the strategy of modeling microRNA prediction process as belief propagation on a weighted graph,hence reduced the time complexity of the algorithm.The core idea of algorithm was to rank the data with respect to the intrinsic manifold structure collectively revealed by a great amount of data,hence enhanced the accuracy of the ranking results.Experiments on H.sapiens and anopheles gambiae genes show that manifold ranking algorithm is better than the traditional algorithm,and can be worked as an effective tool for predicting novel microRNAs.
Keywords:microRNA   weighted graph   belief propagation   manifold ranking   prediction   bioinformatics
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号