首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of four high velocity thermal spray guns using WC-10% Co-4% Cr cermets
Authors:Jean-Gabriel Legoux  Bernard Arsenault  Viviane Bouyer  Christian Moreau  Luc Leblanc
Affiliation:(1) Industrial Materials Institute, National Research Council of Canada, Boucherville, Quebec, Canada;(2) Pyro Genesis, Montreal, Quebec, Canada
Abstract:Four high velocity thermal spray guns were evaluated in the production of 10% Co-4% Cr tungsten carbide (WC) cermets. Three high velocity oxygen fuel guns (JP-5000, JP-5000ST, and Diamond Jet DJ]-2700) and one plasma gun (Axial III) were used to spray the same angular, agglomerated, and crushed WC-10Co-4Cr powder. The DPV-2000 was used to monitor the in-flight velocity and temperature of the WC cermet-sprayed particles. From those values, spray conditions were selected to produce coatings that were evaluated in terms of porosity, hardness, and deposition efficiency. Results show that the plasma Axial III provides the highest particle temperature, between 2000 °C and 2600 °C, depending on the spray conditions. The JP-5000 imparts the highest velocity to the particles, between 550 and 700 m/s, depending on the spray conditions. The ST version of the JP-5000 provides the same velocity as the standard version but with lower particle temperature. The DJ-2700 sprays particles with temperature and velocity between those of the JP-5000 and the Axial III. Minimum porosity values of 2.1%, 3.7%, and 5.3%, respectively, were obtained for the JP-5000, the DJ-2700, and the Axial III guns. The porosity and carbide degradation are found to depend mostly on the particle velocity and temperature, respectively. The values for the Vickers microhardness number (200g) ranged from 950 to 1250. Measurements of the deposition efficiency indicated a variation between 10% and 80%, depending on the spray conditions and the gun used.
Keywords:abrasion resistance  deposition efficiency  diagnostics  DJ-2700  high power Axial III plasma  JP-5000  JP-5000ST  particle state  porosity  WC-10Co-4Cr
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号