首页 | 本学科首页   官方微博 | 高级检索  
     


Planning of sensing tasks in an assembly environment
Authors:Gerhard Werling
Affiliation:(1) Institute for Real-Time Computer Control Systems and Robotics, University of Karlsruhe, D-7500 Karlsruhe, Germany
Abstract:The purpose of this paper is to give an overview of past and recent work on planning sensing strategies for vision sensors. To achieve an economic use of robots in manufacturing, their programs must provide a high degree of fault-tolerance, security, and robustness to prevent unforeseen errors. Model errors (also termed uncertainties) are one of the most frequent reasons for such undesirable events. Robot systems can be made more reliable and fault-tolerant by providing them with capabilities of error detection and recovery, or error prevention. The latter may be achieved by reducing model errors using tactile and non-tactile sensors. The quality of a robot program synthesized by a task-level programming system depends on the accuracy of the model, since all information that is not explicitly given by the programmer must be derived from it. This means that the following questions have to be answered by the automatic task planner in order to plan non-tactile sensing strategies: (1) When do I have to use sensors to reduce uncertainty about the real world? (2) What do I have to use them for? (3) How do I have to use them to achieve the necessary information within an acceptable period of time? There are very few systems which deal broadly with the problem of robust robot programs, whereas there are numerous works on detail aspects of the field. The main approaches will be introduced and discussed in more detail. Finally, a new concept for generating sensor-integrated robust robot programs will be proposed.
Keywords:Verification  task-level programming  robot vision  uncertainty  assembly planning  fault tolerance  classification  prediction  camera location
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号