首页 | 本学科首页   官方微博 | 高级检索  
     


Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro
Authors:Cetica P  Pintos L  Dalvit G  Beconi M
Affiliation:Area of Biochemistry, School of Veterinary Sciences, University of Buenos Aires, Chorroarín 280, (C1427CWO) Buenos Aires, Argentina.
Abstract:Few studies demonstrate at a biochemical level the metabolic profile of both cumulus cells and the oocyte during maturation. The aim of the present study was to investigate the differential participation of enzymatic activity in cumulus cells and in the oocyte during in vitro maturation (IVM) by studying the activity of enzymes involved in the control of amino acid metabolism, alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and the tricarboxylic acid (TCA) cycle, isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH). No NAD-dependent isocitrate dehydrogenase (NAD-IDH) activity was recorded in cumulus-oocyte complexes (COCs). ALT, AST, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and MDH enzymatic units remained constant in cumulus cells and oocytes during IVM. Specific activities increased in oocytes and decreased in cumulus cells as a result of IVM (P<0.05). Similar activity of both transaminases was detected in cumulus cells, unlike in the oocyte, in which activity of AST was 4.4 times greater than that of ALT (P<0.05). High NADP-IDH and MDH activity was detected in the oocyte. Addition of alanine, aspartate, isocitrate + NADP, oxaloacetate or malate + NAD to maturation media increased the percentage of denuded oocytes reaching maturation (P<0.05), in contrast to COCs in which differences were not observed by addition of these substrates and co-enzymes. The activity of studied enzymes and the use of oxidative substrates denotes a major participation of transaminations and the TCA cycle in the process of gamete maturation. The oocyte thus seems versatile in the use of several oxidative substrates depending on the redox state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号