首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys
Authors:K T Ramesh
Affiliation:(1) the Whiting School of Engineering, Mechanical Engineering, Johns Hopkins University, 21218-2684 Baltimore, MD
Abstract:A substantial amount of work has been performed on the effect of high rates of loading on the deformation and failure of fcc and bcc metals. In contrast, the influence of high strain rates and temperature on the flow stress of hcp metals has received relatively little attention, and the modes of dynamic failure of these materials are poorly characterized. The low symmetry of these materials and the development of twinning lead to a particularly rich set of potential mechanisms for deformation and failure at high rates. This article reviews results of high-strain-rate deformation and dynamic failure studies on hcp metals, with a focus on titanium, Ti-6Al-4V, and hafnium. Strain rates as high as 105 s −1 are considered, and observations of adiabatic shear localization and subsequent failure are discussed. This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号