首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of output characteristics of tubular SOFC with internal reformer
Affiliation:1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China;2. National Research Ogarev Mordovia State University, Saransk 430005, Russian Federation;3. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract:In the solid oxide fuel cell (SOFC) system, the internal reforming of raw fuel will act as an efficient cooling system. To realize this cooling system, a special design of the internal reformer is required to avoid the inhomogeneous temperature distribution caused by the strong endothermic reforming reaction at the entrance of the internal reformer. For this purpose, a tubular internal reformer with adjusted catalyst density can be inserted into the tubular SOFC stack. By arranging this, the raw fuel flows along the axis of the internal reformer to be moderately reformed and returns at the end of the internal reformer as a sufficiently reformed fuel.In this paper, the output characteristics of this configuration are simulated using mathematical models, in which one-dimensional temperature and molar distributions are computed along the flow direction. By properly mounting the catalyst density in the internal reformer, the temperature distribution of the cell stack becomes moderate, and the power generation efficiency and the exhaust gas temperature are higher. Effects of other operating conditions such as fuel recirculation, fuel inlet temperature, air recirculation and air inlet temperature are also examined under the condition where the maximum temperature of the stack is kept at 1300 K by adjusting the air flow rate. Under this condition, these operating conditions exert a considerable effect on the exhaust temperature but have a slight effect on the efficiency.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号