首页 | 本学科首页   官方微博 | 高级检索  
     


Morphologies of nanostructured TiO2 doped with F on Ti–6Al–4V alloy
Authors:E Matykina  JM Hernandez-López  A Conde  C Domingo  JJ de Damborenea  MA Arenas
Affiliation:aDepartamento de Corrosión y Protección, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain;bInstituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
Abstract:The formation of nanotubes in sulphuric/hydrofluoric acid electrolyte at controlled voltage is investigated on Ti–6Al–4V alloy used for load-bearing prosthetic applications. The effects of anodizing time and voltage on film morphology, composition and microstructure are studied by scanning and transmission electron microscopy, Rutherford backscattering spectroscopy (RBS), and Raman spectroscopy. Fluorine content in the films was of a particular interest for enhancement of antibacterial properties of the surface. The efficiencies of film formation are determined as about 40% and 80% for anodizing at 20 V and 60 V respectively for shorter anodizing time and as about 1 and 5% for longer anodizing time. For 5 min of anodizing, higher voltage conditions results in a thicker barrier layer. At extended anodizing time a further disruption of the nanotubular morphology and formation of approximately 1.5 μm-thick nanoporous film is promoted. The films grown at 20 V contain from 4 at.% to 6 at.% of fluorine. RBS detects about 13 at.% of fluorine incorporated in the film formed at 60 V for 60 min, possibly associated with a greater film thickness. The oxide film material consists of amorphous titania matrix doped with V2O5 and Al2O3.
Keywords:Ti&ndash  6Al&ndash  4V alloy  Nanotubes  Anodizing  Fluorine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号