首页 | 本学科首页   官方微博 | 高级检索  
     

基于DAE-HTPF的新能源汽车电池剩余寿命预测
引用本文:王正. 基于DAE-HTPF的新能源汽车电池剩余寿命预测[J]. 机械与电子, 2020, 38(3): 3-5
作者姓名:王正
作者单位:1.宁夏大学新华学院,宁夏 银川 750021;2.宁夏大学土木与水利工程学院,宁夏 银川 750021
基金项目:宁夏大学新华学院科学研究基金资助项目;宁夏 2019 年度高等学校"双师型教师实践锻炼计划"项目
摘    要:

针对反映锂电池寿命的趋势性特征自学习与电池剩余寿命预测问题,提出了基于降噪自编码器(denoising auto-encoder,DAE)与混合趋势粒子滤波(hybrid trend particle filter,HTPF)的电池剩余寿命预测方法。利用电池使用前期的信号特征训练DAE,然后将使用中后期的电池信号特征输入DAE中,并提取重构误差。另外,利用HTPF方法对电池生命周期内的信号特征进行分析,建立自适应状态方程。分析结果表明,该方法能有效地对锂电池的性能退化趋势性特征进行自提取,从而有效地减少人为因素的干扰,同时相比于传统粒子滤波(particle filter,PF),HTPF对电池剩余寿命预测精度更高。

关 键 词:锂电池  剩余寿命预测  DAE HTPF  性能退化

Remaining Life Prediction of New Energy Vehicle Battery Based on DAE-HTPF
WANG Zheng. Remaining Life Prediction of New Energy Vehicle Battery Based on DAE-HTPF[J]. Machinery & Electronics, 2020, 38(3): 3-5
Authors:WANG Zheng
Affiliation:1.XinhuaCollegeofNingxiaUniversity,Yinchuan750021,China; 2.SchoolofCivilandHydraulicEngineering,NingxiaUniversity,Yinchuan750021,China
Abstract:A method of battery life prediction based on Denoising Auto-encoder(DAE) and Hybrid Trend Particle Filter(HTPF) was proposed to analyze the trend feature of self-learning for lithium battery and its remaining life prediction. The DAE was first trained by the signal characteristics of the battery in its early stage, then input with the signal characteristics of it in middle and late stages, and the reconstruction error data was extracted. In addition, the HTPF method was used to analyze the signal characteristics in the battery life cycle, and an adaptive state equation was established. The analysis results show that this method can effectively extract the degradation trend characteristics of lithium battery, thus effectively reducing the interference of human factors. Compared with traditional particle filter(PF), HTPF is more accurate in predicting battery remaining life.
Keywords:lithium-ion battery  remaining useful life prediction  DAE-HTPF  performance degradation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《机械与电子》浏览原始摘要信息
点击此处可从《机械与电子》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号