摘 要: | 针对采用传统参数估计方法得到的模型拟合误差较大的问题,建立多重威布尔混合分布参数估计的非线性最小二乘模型,并提出基于模拟退火(SA)思想的自适应粒子群(PSO)算法进行求解。在PSO算法优化过程中,采用自适应方法调整惯性权重和加速因子,加快其收敛速度;引入模拟退火机制,根据Metropolis准则确定最优粒子的取舍,改善其全局搜索能力。将该方法应用到某型柴油机喷油器失效分布的参数估计中,并与图解法、基于Levenberg-Marquardt的非线性最小二乘法、标准PSO算法、自适应PSO算法求解的结果进行比较,分析所提方法的优化性能及精度。结果表明,该方法能够有效提高多重威布尔混合分布模型参数估计的精度和效率。
|