首页 | 本学科首页   官方微博 | 高级检索  
     


Indentation of Polytetrafluoroethylene (PTFE) Thin Film: Simulations by Using Continuum Damage Mechanics
Authors:Qian Sheng  Aleksandr J White  Sinan Müftü
Affiliation:1. Northeastern University, Department of Mechanical Engineering, Boston, MA, USA;2. GVD Corporation, Cambridge, MA, USA
Abstract:Thin compliant films on relatively hard substrates have a wide range of applications. In this work, continuum damage mechanics is used to simulate indentation of a 10-μm-thick polytetrafluoroethylene (PTFE) film deposited on glass for different load levels by finite element analysis. The results, compared to experiments, are useful in investigating the mechanics of wear and friction of soft thin films. The material model is elastic–plastic before damage initiation and includes linear damage progression thereafter. The effects of ductile and shear damage criteria and two parameters pertinent to the damage model, the equivalent plastic strain for damage initiation and the bulk fracture toughness, on the indentation are investigated. It is shown that the shear damage model is more suitable to characterize the indentation of the PTFE thin film. The bulk fracture toughness has greater significance with regard to damage compared to equivalent plastic strain at the onset of damage initiation. Comparison of simulation and experimental results shows that bulk fracture toughness of the thin PTFE film is approximately 20 J/m2. This value is lower than that for the bulk PTFE, and the difference is attributed to the thin-film nature of the case considered here.
Keywords:Continuum damage mechanics  fracture toughness  PTFE  thin film  finite element analysis  indentation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号