首页 | 本学科首页   官方微博 | 高级检索  
     


Segmental effects on motor function following different intrathecal receptor agonists and antagonists in rabbits
Authors:FM Borgbjerg  C Frigast
Affiliation:Pain Clinic, Bispebjerg Hospital, University of Copenhagen, Denmark.
Abstract:BACKGROUND: The occurrence of motor impairment after intrathecal drug administration is infrequently reported in the literature and the methods of determining motor function vary. METHODS: Motor function was examined in rabbits after a wide dose range of a variety of intrathecally administered opioid agonists, alpha-adrenergic agonists, non-competitive NMDA antagonists, a benzodiazepine agonist, a sigma agonist, paracetamol, isotonic and acidified saline. The opioids, sigma agonist and NMDA antagonists were additionally examined following pretreatment with naloxone. The opioid antagonists naltrindole and MR2266 (delta- and kappa-opioid receptor antagonists, respectively) were administered before the delta agonist and the kappa agonist. The alpha 2-adrenergic antagonist yohimbine was given before administration of dexmedetomidine and xylazine. Motor function was evaluated by a five-point scale of motor impairment ranging from normal function to total paralysis of the hindlegs. RESULTS: DPDPE (delta agonist), paracetamol, naloxone, naltrindole, yohimbine, isotonic and acidified saline did not affect motor function. MR2266 produced minor motor impairment. The alpha-adrenergic agonist dexmedetomidine reduced motor function slightly and dose independently. The remaining compounds affected motor function in a dose-dependent fashion. High doses of morphine produced hypersensitivity and myoclonus. An irreversible paralysis of the hindlegs was observed following intrathecal administration of the sigma agonist SKF10047 in high doses. Naloxone and MR2266 attenuated the effects of U50488H (kappa agonist). CONCLUSION: The present results reveal a dose-dependent reduction in motor function after intrathecal administration of some of the investigated compounds. The mechanisms behind these effects appear to be multifactorial.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号